SAM at the Intensity Frontier

New interfaces for SAM to dramatically improve ease of use and integration.

Robert Illingworth, Adam Lyon:, Marc Mengel,
Andrew Norman, Rick Snider

May 2011

Introduction

SAM is a full featured data handing system used with great success at the Run II
experiments. We believe that the features of SAM will be greatly beneficial, if not
eventually crucial, for the IF experiments as well. We are now facing two difficulties
with SAM: 1) Integrating SAM into an experiment’s framework is not trivial and 2) the
SAM interfaces presented to the users demands a learning curve and differs greatly from
the typical experience with files.

For the reasons above, adoption of SAM by the IF experiments has been very slow. We
wish to make changes to SAM to make integration and adoption easier. For a moderate
amount of development work, we can make a large impact on SAM and its acceptance by
the IF experiments.

The present layered interface

'Contact Adam Lyon lyon@fnal.gov for questions about this document.

Oracle Database Enstore Cache F’hy_s_mal
entities
] r\/ Business Logic,
DB Server L SAM Station] Interface to physical
J entities
SAM C++ SAM Python Application Program
- AP AP Interfaces
I3
O /\
= [Analysis | Pyth |
=% nalysis on
o | Framework [Scripts SAM CLI Tools for users
o o
) /\/ 1‘
Analysis User and administrator
jobs tasks | End users

The figure above displays the present layers in SAM. At the top are the physical entities:
the Oracle database, the Enstore tape system, and the Cache disk servers (or a cache
system like dCache). The next layer contains the low level application code that directly
controls the physical entities. The DB server and the SAM station are services that
contain the business logic of the system and reside on server nodes. The next layer
begins the client software. We have C++ and Python APIs that provide access to the
system. Under the C++ API is the analysis framework code that deals with data handling.
For CDF, D@, and MINOS, we have had significant development efforts to integrate

the C++ API into the experiment’s analysis framework code. Hanging off of the Python
API are various python scripts (mostly used by SAMGrid) and the SAM command line
interface (CLI). Finally, the end user layer includes the analysis jobs making use of SAM
as well as the users and administrators doing their data handling tasks (e.g. creating
datasets, checking locations of files, etc). The Python API and CLI are complicated and
have a steep learning curve. Another drawback of this system is that the SAM Client code
(the APIs and the code necessary for the CLI) must be deployed on any system where
SAM will be used. If we make a change to the client, we must update code at all sites.

A change of philosophy

The SAM commands and interfaces are very all-encompassing, allowing a very rich

set of tasks that can be performed. For example, querying the database involves

a “dimensions” language so that users can input generic queries in a language easier
than SQL. But in our experience at CDF, D@, and MINOS, regular users utilize only a few
functions:

e Users typically do not create their own datasets. Rather, experts in the physics
groups set up datasets for common samples and advertise them on experiment
web pages.

e Users very rarely make use of much of the metadata stored for a file. Experts as
well use a very small subset of the available metadata to create data sets.

e The most common use of SAM is to look up a desired dataset on some experiment
web page and supply that to a job submission script.

In practice, the cost of this interface is the difficulty of use, steep learning curve, and the
complexity of the code behind it. Furthermore, integrating SAM with the experiment’s
C++ analysis framework requires significant work. The C++ and Python APIs mean that
both need to be changed when a part of the DB server or SAM station changes.

The good news is that for the most part, development on the DB server and SAM station
are complete. We do not plan additional development except for bug fixes and minor
improvements. This situation implies that the APIs and the CLI will remain largely
unchanged for the future. But the difficulty in integration and use remain.

We propose a change in philosophy. Instead of presenting an all-encompassing interface
that is difficult, present a simple interface for a limited set of tasks. That is favor ease of
use at the expense of generality. The old CLI will remain so that complicated tasks can
still be performed, but those tasks should be relegated to experts instead of regular users.

We also wish to make SAM more portable by reducing the need to deploy the SAM client
code everywhere.

Three fronts

There are three fronts we wish to address.
1. Defining metadata queries
2. Retrieval of information for interactive use
3. Retrieval of information for batch/grid use

Currently, metadata queries are defined with a dimensions language. The dimensions
language consists of conditional query statements (e.g. “application_name reco
application_version p20.01.02 data_tier root_tree stream bla”) with many shortcuts

to make it simpler than SQL. The command to do a metadata query is “sam translate

constraints”. Neither the command nor the dimensions language are intuitive.
Furthermore, the dimensions code is extremely old and fragile. Changing this code to
add new features now is nearly impossible. The advantage of the dimensions language is
that it allows complex queries involving every piece of metadata. But as mentioned, this
generality is rarely needed, and the complexity it generates hinders use.

Interactive users are faced with learning a new system of commands to access the
system. Granted, these commands are not particularly hard to use, but the options can be
complex and the learning curve is not easy. Since SAM deals with files, it would be easier
to use an interface that users already know.

As mentioned, SAM access from production and analysis applications is allowed by a
specially written layer that interfaces the experiment’s framework to the SAM API.
Since typically experiments have different frameworks, we have had to write different
interface layers -- a time consuming task. We wish to streamline to one interface layer
suitable to all experiments.

The solutions

Oracle Database Enstore Cache Physical

N

Business Logic,

DB Server ’—[SAM Station] Interface to physical

entities

\

SAM Python Application Program

API Interfaces

SAM REST Web Service] Tools for users
Analysis User and administrator
jobs tasks End users

SamWeb

For majority of users, we envision replacing the CLI and analysis framework integration
with a “SAM REST Web Service” layer (henceforth shortened to SamWeb). The idea here

is to have a centrally located web server (and proxies if necessary) that will respond to a
specific and limited set of requests via http GET, POST, and PUT calls. The responses can

be text, XML or JSON (the format may be settable in the http request). Some examples of
functionality of this interface are,

e Return a list of files given a pre-canned metadata query (e.g. run, subrun numbers
and stream ID, MC sample ID, dataset definition name...)

Create a SAM dataset defintion using a pre-canned metadata query

Start a SAM project given a definition name

Start a SAM process

Get the next file for a process

Release a file for the process

Store a file (upload the file)

Given that SAM already has a Python API and there exist several long-standing well
developed scalable web servers for Python, we believe that writing SamWeb is not a
long-term project. Rather, it is an exercise in integrating these pieces.

The interface layer between SAM and the experiments would be simpler. The
experiment code would need to make HTTP requests to the SamWeb service. There are
several C++ libraries that can handle such requests (e.g. libcurl) or some frameworks
may have this capability built in.

A huge advantage of the SamWeb interface layer is that the SAM client software would
only reside on the SamWeb servers, not on every node that needs to talk to SAM. This
change makes deploying SAM much simpler. If we alter the API, we only need to update
the SamWeb server, not every client.

Examples of calls could be...

Return the list of files matching criteria
http://samweb.fnal.gov/listMatchingFiles?run=12334&subrun=45&stream=nu

Start a SAM project

http://samweb.fnal.gov/createProject?group=minerva&defintion=nu 123

Get next file
http://samweb.fnal.gov/getNextFile?process=1234554

As mentioned above, results could be returned in the most appropriate format.

We believe that SamWeb addresses the first and third fronts (defining queries and
retrieval of information for batch jobs).

Note in the diagram that the SamWeb interface can have a direct connection to the
Oracle DB. We envision new metadata queries that the current dimensions language
cannot handle. As mentioned, development of the software behind the dimensions
language is simply no longer feasable. As an alternative, such queries may be performed
by SamWeb as direct SQL on the Oracle Database. The fact that such queries would occur
on the server and not in the client is another advantage of SamWeb.

samfs

When users want to deal with files, they use the file system commands. For example, cd,
Is, cp, and cat. It would make SAM much more intuitive if it too could be accessed like the

regular Linux file system.

dCache recognizes this philosophy as well. To browse the dCache catalog and identify
files to access, one utlilizes pnfs, which is a remote file system mounted on the node.
The server, however, is really a database and each Is triggers a query. pnfs, however, is
quite limited - there is only one “path” of metadata (the destination path in pnfs - each
directory piece is metadata, and there can be only one path to the file). You cannot cp or
cat the files in pnfs. To access the file, you need to issue a dccp or dcap dCache access
command, using the path as a file identifier.

We envision a system much more flexible than pnfs for SAM that would involve FUSE
(this system is hence called samfs). FUSE implements a fully functional filesystem
interface to a user program. That is the program reacts to filesystem calls, like “read
directory”, “get file attributes”, “read file”, “follow symlink”. FUSE is well established
code used by many applications (including cernvm-fs and sshfs). FUSE has a python
binding (several actually) and so can easily be tied to SAM. This technology allows
intuitive queries such as:

List files given run, subrun, data type
ls /samfs/run/268211/123/nubar

List subruns for a run
ls /samfs/run/268211

List files in a dataset
ls /samfs/dataset/common nuappear winter2011

Operations on files, including retrieval and open, could also be performed. Say a user
wanted a specific file to test a program. That person could do,

Download the particular file (note the use of “get” in the path) to your machine
ls /samfs/get/run/233331/12/nubar/nubar 233331 12 processed.root

Open it in root (the actual location of the file is in some local cache that the user need not
know)

root

TFile* myFile = new TFile(“/samfs/run/233331/12/nubar/

nubar 233331 12 processed.root”)

The download may be fairly fast or quite slow if the file is coming from tape. The user
uses the same intuitive system.

We also imagine storing files with this system.

One of the authors of this document (Adam) put together a very crude proof of principle

FUSE sysem that does actual SAM queries (but only simulates data movement). The fact
that such a system could be written very quickly and easily was impressive.

It is possible to hook samfs up to SamWeb instead of directly to the python API.

The development effort

We have yet to perform a detailed study of the software effort needed to bring these
ideas to production. As a precursor, however, we have discussed within REX whether to
stay on the SAM route for data handling or consider alternatives. The concerns raised
were,

There seems to be no other data handling system that provides the features and
success of SAM that can also accommodate multiple experiments. Though one
could imagine adopting a data handling system from the LHC. The problem here
is that each LHC experiment has written their own system tightly integrated
with their infrastructure. Almost none of the IF experiments plan to adopt an
LHC experiment infrastructure. The exception is Minerva, which uses an old
version of LHCb’s Gaudi. Minerva has in fact adopted SAM for their data handling.
Furthermore, CMS and ATLAS started with a different data handling philosophy
than SAM - “move the jobs to the data” instead of SAM’s “move the data to the
jobs”. “Move the jobs to the data” has turned out to have significant performance
problems and management headaches, and both CMS and ATLAS have started
making their DH systems look much more SAM-like.

A disadvantage of SAM is that it is very monolithic, but we believe that breaking it
up into pieces would require a development project that would be too expensive
for the value added.

SAM’s metdata infrastructure may not be able to accommodate new metadata
elements desired by IF experiments. In this case, we can add parallel database
tables with this information and provide special queries to access (CDF does this
now). The proposed SamWeb interface would make integration of these queries
easy.

The conclusion was to stay with SAM and essentially freeze the core software. Some
small number of additional features may need to be added, but that should be done
outside of the main system, if possible.

The SamWeb idea here in particular makes integration of those new features easy.
Furthermore, of we do decide to move to another data handling system, having
communication occur via the web interface insulates the experiments from the DH
system choice.

If the ideas in this document are accepted, the next steps are to gather requirements and
write specifications. As mentioned, we believe that the development work would not be
significant and the value added important. We already have the SAM python API, and

we have extensive experience with python directly connecting to Oracle if we need that
functionality. Also as mentioned, there exist several python web services (e.g. Twisted
python) that we could use for SamWeb. FUSE already has several python bindings. So the
development work is more of integrating these pieces instead of writing application and
business logic.

Conclusions

We believe we can make significant improvements to the usability and deployment of
SAM without mounting a lengthy software project. The use of python in SamWeb and
samfs allows for easy access to the SAM client software that could sit on some centralized
service node. The ability to have one experiment interface layer to SAM and providing
ease of use for several of the most popular SAM functions would be a big step forward.
Finally, if the full API were needed for some purpose, it could still be deployed or used at
a master site.

